Deep Adversarial Training for Multi-Organ Nuclei Segmentation in Histopathology Images
نویسندگان
چکیده
منابع مشابه
Automated Segmentation of Nuclei in Breast Cancer Histopathology Images
The process of Nuclei detection in high-grade breast cancer images is quite challenging in the case of image processing techniques due to certain heterogeneous characteristics of cancer nuclei such as enlarged and irregularly shaped nuclei, highly coarse chromatin marginalized to the nuclei periphery and visible nucleoli. Recent reviews state that existing techniques show appreciable segmentati...
متن کاملTransfer Learning for Cell Nuclei Classification in Histopathology Images
In histopathological image assessment, there is a high demand to obtain fast and precise quantification automatically. Such automation could be beneficial to find clinical assessment clues to produce correct diagnoses, to reduce observer variability, and to increase objectivity. Due to its success in other areas, deep learning could be the key method to obtain clinical acceptance. However, the ...
متن کاملMulti-Organ Segmentation with Missing Organs in Abdominal CT Images
Currently, multi-organ segmentation (MOS) in abdominal CT can fail to handle clinical patient population with missing organs due to surgical resection. In order to enable the state-of-the-art MOS for these clinically important cases, we propose (1) automatic missing organ detection (MOD) by testing abnormality of post-surgical organ motion and organ-specific intensity homogeneity, and (2) atlas...
متن کاملAutomatic Nuclei Segmentation in H&E Stained Breast Cancer Histopathology Images
The introduction of fast digital slide scanners that provide whole slide images has led to a revival of interest in image analysis applications in pathology. Segmentation of cells and nuclei is an important first step towards automatic analysis of digitized microscopy images. We therefore developed an automated nuclei segmentation method that works with hematoxylin and eosin (H&E) stained breas...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Medical Imaging
سال: 2020
ISSN: 0278-0062,1558-254X
DOI: 10.1109/tmi.2019.2927182